Max Sum Plus Plus
题意
n个数字,选m组,使得SUM最大。
思路
dp[i][j]=max(dp[i][j-1]+a[j],max(dp[i-1][k])+a[j]) (0<k<j)。
dp[i][j-1]+a[j]表示的是前j-1分成i组,第j个必须放在前一组里面。
max( dp[i-1][k] ) + a[j] )表示的前(0<k<j)分成i-1组,第j个单独分成一组。
但是题目的数据量比较大,时间复杂度为n^3,n<=1000000,显然会超时,继续优化。
max( dp[i-1][k] ) 就是上一组 0….j-1 的最大值。我们可以在每次计算dp[i][j]的时候记录下前j个
的最大值 用数组保存下来 ,这样时间复杂度为 n^2。
(1)节省时间
由基本思路,我们可以知道,dp[i][j]=max(dp[i][j-1]+num[j],dp(i-1,t)+num[j]),其中i-1<=t<=j-1.我们只要找到dp[i][j-1] 和dp[i-1][t]的最大值加上num[j]即为dp[i][j].所以,定义一个数组pre_max[n],用pre_max[j-1]来表示求解dp[i][j]时dp[i-1][t]的最大值,则dp[i][j]=max(pre_max[j-1],dp[i][j-1])+num[j]。特别注意,pre_max[n]这个位置的存储空间是始终用不到的,因此可以用来存储其他数值,在接下来会用到。在求解dp[i][j]的同时,我们可以计算出dp[i][t];i<=t<=j的最大值,这个最大值在计算dp[i+1][j+1]的时候需要作为pre_max[j]的形式被使用,我们先把它存在pre_max[n]中。
你可能会问:为什么不把它直接放在pre_max[j]中呢?因为你接下来需要计算dp[i][j+1]的值,需要用到pre_max[j]中原来的值,如果你把它存在这里,就会覆盖掉计算dp[i][j+1]所需要的那个值。所以,先把它放在pre_max[n]中。当我们计算完dp[i][j+1]之后,就会发现pre_max[j]中的值已经没有用处了,我们可以把它更新为计算dp[i+1][j+1]所需要的那个值, 即之前放在pre_max[n]中的那个值,即执行pre_max[j]=pre_max[n]。这样我们就节省了计算最大值时付出的时间代价。
(2)节省空间
通过时间的节省,我们突然间发现程序执行结束后pre_max[n]的值即为最后的结果,pre_max[n]数组才是我们希望求解的,dp[m][n]这个庞大的数组已经不是那么重要了,因此,我们现在用整型数tmp来代替dp[m][n],用来临时存储dp[i][j]的值,作为求解pre_max[n]的中介。这样就节省了dp[i][j]占用的极大的空间。
看!代码
1 |
|
[][][][]